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The paper deals with the "nite element method (FEM) solution of the problem with loads
moving uniformly along an in"nite Euler beam supported by a linear elastic Kelvin
foundation with linear viscous damping. Initially, the problem is formulated in a moving
co-ordinate system following the load using a Galilean co-ordinate transformation and
subsequently the analytical solution to the homogeneous beam problem is shown. To be
used in more complicated cases where no analytical solutions can be found, a numerical
approach of the same problem is then suggested based on the FEM. Absorbing boundary
conditions to be applied at the ends of the modelled part of the in"nite beam are derived. The
quality of the numerical results for single-frequency, harmonic excitation is tested by
comparison with the indicated analytical solution. Finally, the robustness of the boundary
condition is tested for a Ricker pulse excitation in the time domain.
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1. INTRODUCTION

Wave propagation in beam-like structures resting on some type of support or medium
has recently been studied extensively, especially within the "elds of vehicle dynamics
and railway tracks. Examples include the work done by Sheng et al. [1] and by Dieterman
and Metrikine [2}4]. Most of the work that has been done recently concerns
analytical solutions to moving load problems (see, e.g., reference [5]) "nding critical
velocities of wave sources [4], as well as analyzing the behaviour of waves. Hardy [6]
suggested a method to determine whether travelling waves will occur when media or
structures are submitted to moving harmonic loading. As an example, Hardy analyzed an
Euler beam on an undamped Kelvin foundation, "nding that either two or four travelling
waves may occur, half of which propagate in front of the point source and the other half
propagates behind the source.

To analyze complex structures, the "nite element method (FEM) is useful, though in wave
propagation problems one has to consider both time and spatial increments in the
numerical algorithm. Speci"cally, Rieker et al. [7] found that 2}8 times more elements have
to be used in analysis of moving loads on a beam than are necessary for analysis of
stationary loads when a "xed system of reference is considered. Furthermore, in unbounded
media one has to apply arti"cial boundary conditions to prevent accumulation of energy
within the modelled part of the medium. Several methods have been introduced in the work
by Wolf and co-workers [8}10]. An FE solution to the convention problem due to
a moving load on an elastic half-space has been given by Krenk et al. [11] using a moving
frame of reference. An analogous moving reference system was used by Metrikine and
0022-460X/01/140587#18 $35.00/0 ( 2001 Academic Press
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Dieterman [12] in the analytical solution of the instability problem due to a point mass
moving on an Euler beam}Kelvin foundation system. Concerning the FE analysis of wave
propagation in beams, the work that has previously been done is, however, con"ned to
analysis in a "xed reference system. This includes the work by Suiker et al. [13], who gave
an FE solution to the wave yield generated by an accelerating load on a Timoshenko
beam}half-space system.

In this paper, the particular convection problem of a moving load on an in"nite Euler
beam resting on a Kelvin foundation has been treated in a new way. Using a Galilean
co-ordinate transformation, the equation of motion is formulated in a convected
co-ordinate system following the point load. Furthermore, damping in the support is taken
into consideration. An FEM approach to the problem, including the derivation of
transparent boundary conditions, is suggested to handle complicated problems such as
rail}vehicle interaction for multiple degrees-of-freedom vehicles as well as local non-linear
behaviour of the beam in the vicinity of the moving force. The transmitting boundary
conditions provide the interaction forces from the surrounding linear domain. Hence, the
boundary conditions provide the interaction forces from the surrounding linear domain.
Hence, the boundary conditions are independent of any possible non-linearities in the
FE part of the structure.

The boundary conditions are derived for a single-frequency harmonic point load moving
at constant velocity, but the performance will also be tested for an excitation signal
containing a broad band of frequencies.

2. EQUATION OF MOTION IN CONVECTED CO-ORDINATES

A plane Euler beam with constant bending sti!ness EI and mass per unit length k is
considered. Axial deformation is assumed not to take place. The beam is supported by
a Kelvin foundation with constant spring sti!ness i and viscous damping c per unit length.

Now the beam is split into two regions. One region comprises the part of the beam to be
modelled with "nite elements, whereas the contributions from the surroundings, i.e., the
other region, to the reaction forces at the interface are incorporated by means of absorbing
boundary conditions. Hence, the frequency response matrix relating the in-plane bending
moment M

b
(t) and shear force Q

b
(t) to the vertical end displacement u

b
(t) and co-directional

end rotation h
b
(t) is sought at the arti"cial boundary X"X

b
, where X is a "xed co-ordinate

measured along the beam axis (see Figure 1).
The beam is assumed to be free of loading except for a point force located at X"X

P
. In

a "xed co-ordinate system, the equation of motion for the rest of the beam becomes

EI
L4u

LX4
#iu#cuR #kuK"0. (1)

u(X, t) is the displacement "eld, whereas uR and uK denote the velocity and acceleration, which
in "xed co-ordinates are de"ned, respectively, as

uR (X, t)"
Lu

Lt
, uK (X, t)"

L2u

Lt2
. (2)

A discretization of equation (1) and implementation of matching absorbing boundary
conditions may prove useful for FEM analysis of stationary load problems. However, in the
general case, where moving loads occur, the problem is better suited for analysis in



Figure 1. Plane Euler beam on Kelvin foundation.

Figure 2. Fixed and moving co-ordinates, X and x.
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a convected co-ordinate system. Speci"cally, when the load moves at the constant velocity
< along the beam axis in the positive X direction, a description in convected co-ordinates is
obtained by application of the Galilean transformation

x"X!<t, (3)

relating the "xed Cartesian co-ordinate X to the co-directional, convected co-ordinate x. As
seen from equation (3) and illustrated in Figure 2, x is moving along with the point source,
and the two co-ordinate systems coincide at t"0.

Partial derivatives in the two co-ordinate systems are related in the following manner:

L
LX

"

L
Lx

,
L
Lt K

X

"

L
Lt K

x

!<
L
Lx

,

(4)
L2

Lt2 K
X

"

L2

Lt2 K
x

!2<
L2

LxLt K
x

#<2
L2

Lx2
.

Hence, in the convected co-ordinate description, the equation of motion for an Euler
beam supported by a Kelvin foundation is found to be

EI
L4u

Lx4
#iu#c AuR !<

Lu

LxB#k AuK!2<
LuR
Lx

#<2
L2u

Lx2B"0. (5)

Here use has been made of the fact that the displacement "eld is identical in "xed and
moving co-ordinates, i.e., u(x, t)"u (X, t), as long as x and X describe the same material
point, which will be the case when equation (3) is applied.

3. DISPLACEMENT FIELD FOR HARMONIC EXCITATION

The load is assumed to vary harmonically with time at the circular frequency u, thereby
giving rise to harmonic bending waves in the beam that may or may not propagate as
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travelling waves into the far"eld. Furthermore, for the sake of convenience, the load is
assumed to be located at x

P
"0 lying within the FEM modelled part of the beam. Hence,

solutions to equation (5) are sought in the form

u (x, t)"u
0
e*(kx~ut), (6)

where i"J!1 is the imaginary unit and k is the wavenumber, which is generally
complex.

Insertion of the displacement "eld (6) into equation (5) and subsequent rearrangement of
the terms lead to the characteristic polynomial

k4!
k<2

EI
k2!

(ic<#2ku<)

EI
k#

(i!ku2!icu)

EI
"0. (7)

Hence, there are four independent harmonic solutions to equation (5), namely the
displacement "elds of type (6) with wavenumbers corresponding to the four roots k

j
,

j"1, 2, 3, 4, of equation (7). The general solution to the homogeneous di!erential equation
(5) is a superposition of all four terms.

Alternatively, the jth wavenumber may be written as

k
j
"a

j
#ib

j
, (8)

where a
j
and b

j
are the real and imaginary parts of k

j
respectively. a

j
represents propagation

and b
j
represents attenuation of the jth wave component. Furthermore, for convenience, the

non-dimensional frequency, X, the non-dimensional convection velocity, l, as well as the
damping ratio, f are introduced:

X"

u
u

0

, u
0
"S

i
k

, l"
<

<
0

, <
0
"4S

EIi
k2

, (9, 10)

f"
c
c
0

, c
0
"2Jki . (11)

u
0

signi"es the circular eigenfrequency of the in"nite beam with respect to the vertical
sti!-body mode, and l may be interpreted as some kind of Mach number since it is of order
1 when < is close to the lowest of the phase velocities c

j
"u/a

j
.

When no convection is present it turns out that one of the wavenumbers always has
positive imaginary part, except when X"0, f"0. This wavenumber will be referred to as
k
1
. Another wavenumber, k

2
, has either a positive imaginary part or is positive and real.

A third wavenumber always has a negative imaginary part, except when X"0, f"0. This
wavenumber will be addressed k

3
. Finally, k

4
has either a negative imaginary part or is

negative and real.
Physically, only solutions with "nite displacement amplitudes in the far "eld are

acceptable and, furthermore, waves without attenuation must propagate away from the
source. Henceforth, the displacement "elds on each side of the source reduce to

u (x, t)"G
A

1
e~b1x`*(a1x~ut)#A

2
e~b2x`*(a2x~ut),

A
3
e~b3x`*(a3x~ut)#A

4
e~b4x`*(a4x~ut),

x'0,

x(0,
(12)



Figure 3. Nondimensional wavenumbers and amplitudes for f"0. Curves corresponding to the 1st, 2nd, 3rd
and 4th wave component have been indicated by s , h , f and ] respectively.
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where, to summarize, the following characteristics apply for l"0:

b
1
'0, b

2
'0sb

2
"0, a

2
'0,

(13)
b
3
(0, b

4
(0sb

4
"0, a

4
(0.

When convection is introduced the wavenumbers, especially k
4
, behave in a slightly

di!erent manner. Thus, for su$ciently low excitation frequency and high convection
velocity the 4th wave component starts moving in the opposite direction. This, together
with other phenomena, is illustrated in Figures 3}5, which show the wavenumbers'
dependence on the loading frequency and the convection velocity at di!erent levels of
damping in the support. The wavenumbers and amplitudes have been normalised with
respect to the parameters k

0
"=

0
/<

0
and A

0
"EI~1 k~3

0
.

In the general case, where damping is present in the support, no wave propagation takes
place into the far "eld in the form of travelling waves without attenuation, since all b

j
O0,

see equation (12). However, when no damping is applied, it may be noticed that travelling
waves without attenuation still occur only under certain circumstances, namely when X'1
(Figure 3), since some of the b

j
s here become zero. Such so-called cut-o+ frequencies as u

0
have also been proved to exist in soil layers overlaying a bedrock [9].

It must be emphasized that a small value of a
j
corresponds to a high value of c

j
, especially

when a
j
"0, Dc

j
D"R. The wavelength is given as j

j
"Dc

j
¹

j
D with ¹

j
denoting the wave

period which will be equal to the excitation period, ¹. Thus, the jth wavelength is (nearly)
in"nite when a

j
is (close to) zero. Moreover, these waves with (nearly) in"nite wavelengths

are associated with a high degree of attenuation. Hence, these waves are (almost) standing
waves present only within a small region near the source. There is one exception to this,
namely the 4th wave component (]signature) for l"1 and 2 (see Figures 4 and 5).



Figure 4. Nondimensional wavenumbers and amplitudes for f"0)1. Curves corresponding to the 1st, 2nd, 3rd
and 4th wave component have been indicated by s , h , f and ] respectively.

Figure 5. Nondimensional wavenumbers and amplitudes for f"0)2. Curves corresponding to the 1st, 2nd, 3rd
and 4th wave component have been indicated by s , h , f and ] respectively.
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Here, a"0 for X+1, but at the same time b is very small. This observation will be returned
to later.

Henceforth, note that when no convection is introduced the 1st and 3rd wave component
(s and f of Figures 3 to 5) will propagate as standing waves when f"0, i.e., waves with
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a"0. These waves will, however, transform into travelling waves when l'0. Furthermore,
the waves that in all cases propagate as travelling waves, i.e., the 2nd and 4th wave
component (h and ] of Figures 3 to 5), will propagate at a relatively higher speed behind
the source and lower speed in front of the source as the level of convection increases, since
the phase velocity c

j
of wave propagation is proportional to a~1

j
. An analysis showing how

many travelling waves arise for di!erent combinations of X and l has previously been
presented by Hardy [6] for the problem in question, although for a "xed co-ordinate
system.

To complete the analytical solution, the amplitude parameters A
j
must "rst be "tted to

ful"ll the following requirements at the loading point, i.e., x
P
"0,

u~(0, t)"u`(0, t), EI
L2u~

Lx2 K
x/0

"EI
L2u`

Lx2 K
x/0

,

Lu~

Lx K
x/0

"

Lu`

Lx K
x/0

, EI
L3u~

Lx3 K
x/0

"EI
L3u`

Lx3 K
x/0

!P
0
, (14)

where u~ and u` are the displacement "elds at negative and positive abscissas, respectively,
and P

0
is the amplitude of the harmonic excitation, i.e., P(t)"P

0
e~*ut. Equation (14)

provides the following four linear equations for the determination of the unknown
amplitudes A

j
in equation (12):

1 1 !1 !1

g
1

g
2

!g
3

!g
4

g2
1

g2
2

!g2
3

!g2
4

g3
1

g3
2

!g3
3

!g3
4

A
1

A
2

A
3

A
4

"

1

EI

0

0

0

P
0

, (15)

where g
j
"!b

j
#ia

j
. The amplitudes have been plotted for various combinations of

damping, convection and excitation frequency in Figures 3}5 along with the corres-
ponding wavenumbers. It is seen that there is a clear connection between peaks of
the amplitudes and bifurcations on the frequency}wavenumber curves. Of special interest
are the peaks at X"1 for f"l"0, which go towards R. On the other hand,
when damping is introduced, either in the form of material damping, f'0, or because of
the local energy loss due to convection, l'0, the amplitude peaks have "nite extrema.
However, the (X, l) combinations corresponding to the peaks might still prove critical in
constructional design.

4. FE TRANSMITTING BOUNDARY CONDITIONS

Subsequently, only a "nite part of the beam, i.e., in the [x~
b

, x`
b

]-interval will be
considered. Transmitting boundary conditions are to be derived for the interfaces x~

b
and

x`
b

which will constitute the end points of the FEM model. With the direction
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de"nitions given in Figure 1 the bending moment and shear force become

M(x, t)"!EI
L2u

Lx2
, Q(x, t)"!EI

L3u

Lx3
(16)

and the rotation is de"ned as

h(x, t)"!

Lu

Lx
. (17)

With these de"nitions and the displacement "elds given by equation (12), the following
relationships between amplitudes in the frequency domain for a boundary located at
positive abscissas are then given:

C
hK `
b

(u)

uL `
b

(u)D"L`
0 C

A
1

A
2
D , L`

0
"C

b
1
!ia

1
1

b
2
!ia

2
1 D , (18)

C
MK `

b
(u)

QK `
b

(u) D"L`
1 C

A
1

A
2
D , L`

1
"!EIC

(b
1
!ia

1
)2

(b
1
!ia

1
)3

(b
2
!ia

2
)2

(b
2
!ia

2
)3D , (19)

where the upper index # has been introduced to indicate that the parameters belong to the
interface at positive abscissas and the amplitude functions uL `

b
(u), hK `

b
(u), QK `

b
(u) and MK `

b
(u)

are de"ned by

u`
b

(t)"uL `
b

(u)e~*ut, h`
b

(t)"hK`
b

(u)e~*ut,

(20)

Q`
b

(t)"QK `
b

(u) e~*ut, M`
b

(t)"MK `
b

(u)e~*ut,

Likewise, the interface parameters at negative abscissas are assigned the superscript !. In
this case, the A

3
and A

4
terms are included.

From equations (18) and (19) it follows that the interface reaction forces can be
formulated as functions of the displacement and rotation. Hence, the following frequency
response relation arises:

C
MK

b
(u)

QK
b
(u) D"B(u) C

hK (u)

uL
b
(u)D , B (u)"G

L`
1

(L`
0

)~1,

L~
1

(L~
0

)~1,

x
b
'0,

x
b
(0.

(21)

The coe$cients of the frequency response matrix, B(u), are generally complex.
Subsequently, equation (21) is approximated in the following manner:

C
MK

b
(u)

QK
b
(u) D"AR (B)#

iu
u

1

I(B)B C
hK
b
(u)

uL
b
(u)D , (22)

where R (B) and I(B) represent the real and imaginary parts of B (u) respectively. For
harmonic excitation with the circular frequency u"u

1
, equation (22) represents a set

of completely transparent boundary conditions in the frequency domain, i.e., for
a single-frequency signal no re#ection occurs. However, when the response is not purely
harmonic with a single frequency, some re#ection takes place at the interfaces.
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Introducing the matrices

K
b
"R (B), C

b
"!

1

u
1

I (B), (23)

equation (22) may be formulated as the following transmitting boundary conditions in the
time domain:

C
M

b
(t)

Q
b
(t) D"K

b C
h
b
(t)

u
b
(t)D#C

b C
hQ
b
(t)

uR
b
(t)D . (24)

Nevertheless, combinations of the material properties and the loading frequency exist where
equation (24) will not be physically correct. The problem is that in order to obtain a stable
FEM scheme, the system matrices have to be positive de"nite. This means that the diagonal
terms as well as the determinants of the boundary condition matrices must be positive. No
problem arises in the imaginary part of B, i.e., the damping matrix, but for frequencies above
some factor (typically in the range 1.1}2.6) times the cut-o! frequency the b

22
component of

B relating Q
b
(t) to u

b
(t) will have negative real part. A solution to the problem is obtained by

replacing the "rst order boundary condition by an equivalent second order boundary
condition. Hence, if and only if kb

22
(0, equation (24) is modi"ed to

C
M

b
(t)

Q
b
(t) D"K*

b C
h
b
(t)

u
b
(t)D#C

b C
hQ
b
(t)

uR
b
(t)D#M*

b C
hG
b
(t)

uK
b
(t)D , (25)

where

K*
b
"C

2kb
11

0)5kb
21

0)5kb
12

!kb
22
D , M*

b
"!

1

u2
1
C
!kb

11
0)5kb

21

0)5kb
12

2kb
22
D , (26)

Analogous to equation (22), equations (24) and (25) will only be exact for harmonic
variation at the circular frequency u

1
. When the loading frequency u diverges from u

1
, the

performance of the boundary conditions decreases correspondingly.
One idea of how to overcome the problem with frequency dependence is simply to use

a higher order approximation of equation (21) in iu corresponding to a transmitting
boundary condition of the form

C
M

b
(t)

Q
b
(t) D"G

0 C
h
b
(t)

u
b
(t)D#G

1C
hQ
i
(t)

uR
b
(t)D#2#G

nC
h(n)
b

(t)

u(n)
b

(t)D , (27)

with h(j)
b

and u(j)
b

denoting the jth derivatives of h
b
and u

b
with respect to time. Note that

rational "lters like equation (27) can still only be valid for u in a con"ned interval since it
does not provide the correct asymptotic behaviour. Moreover, it has not been possible to
calibrate equation (27) to get a stable FE scheme (i.e., a di!erential "lter with all eigenvalues
having non-positive real parts) that provides a more accurate solution than that obtained
from equations (24) and (25) even within a narrow frequency band.

Wolf [8] proposed a doubly asymptotically correct boundary condition. However, Wolf
assumed an asymptotic behaviour proportional to u for uPR, which is correct for an
elastic medium, but only the b

12
and b

21
components of B have this asymptotic behaviour,

whereas b
11
Ju1@2 and b

22
Ju3@2 in the uPR limit. This actually means that a doubly

asymptotically correct boundary condition cannot be reduced to an ordinary di!erential
equation. Hence, the approach suggested by Wolf cannot be used in the present problem.
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5. FINITE ELEMENT IMPLEMENTATION

As mentioned earlier, the basic idea of the FE approach to the wave propagation problem
is that "nite elements may be used to describe a complicated local linear or non-linear
behaviour of the beam. The transmitting boundary conditions derived in the previous
section will be valid as long as the response in the part of the beam not modelled by the
FEM is linear. This can always be achieved by specifying the boundaries at a su$cient
distance from the moving force. However, for simplicity, a linear model also within the FE
part of the beam will be considered. Thus, to achieve the weak formulation of the equation
of motion, equation (5) is multiplied by an arbitrary weight function, which is chosen as
a virtual velocity "eld, lJ , and integration is carried out by parts,

P
x`
b

x~b
C

L2vJ
Lx2

EI
L2u

Lx2
#vJ Aiu!c<

Lu

Lx
#k<2

L2u

Lx2BD dx#C
LvJ
Lx

MD
x`
b

x~
b

(28)

#P
x`
b

x~
b

vJ AcuR !2k<
LuR
Lx

#kuK B dx![vJ Q]x
`
b

x~
b

"P
x`
b

x~
b

vJ f (x, t) dx.

The Q and M terms in equation (28) are the moment and shear force at the ends of the
FE model, which must agree with equation (24) or (25).

Next, the displacement "eld as well as the virtual velocity "eld is put in discrete form,

u(x, t)"N (x)a (t), vJ (x, t)"N3 (x)a8 (t), (29)

where N (x) and N3 (x) are global shape functions of the dimension 1]2n with n being the
number of nodal points. a and a8 represent the nodal displacements and rotations in the
physical "eld and vertical and angular velocities in the virtual "eld respectively.

Equation (29) is inserted into equation (28). The stationarity condition of the variation
principle then leads to the FEM-formulation

MaK#Ca5 #Ka"f#f
b
, (30)

where the system matrices and load vectors are de"ned as

M"P
x`
b

x~
b

N3 kN dx, C"P
x`
b

x~
b

N3 AcN!2k<
LN

Lx B dx, (31)

K"P
x`
b

x~
b
C
L2N3
Lx2

EI
L2N

Lx2
#N3 AiN!c<

LN

Lx
#k<2

L2N

Lx2 BD dx, (32)

f"P
x`
b

x~
b

N3 f dx, f
b
"[N) Q]x`

b
x~
b

!C
LN3
Lx

MD
x`
b

x~
b

. (33)

The global boundary conditions, equation (24) or (25), must be applied via the boundary
load vector f

b
at the corresponding end nodes of the two outmost elements. Actually, this

corresponds to an adjustment in the system matrices M, C and K rather than the load
vector f.

When linear elements are used in the FEM discretization of wave propagation with
convection, e.g., in the elastic half-space, it is a well-known fact that standard Galerkin
variation with N3 (x)"N (x) causes instability due to negative numerical damping
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proportional to the convection velocity. This may be counteracted using Petrov}Galerkin
variation, where a skew-symmetric term is applied to N3 (x) [14]. Alternatively, the novel
approach suggested by Krenk et al. [11] may be taken. Here the standard Galerkin
approach is used, but in the discretized "eld equations an appropriate amount of additional
damping is introduced to counterbalance the negative numerical damping. The same
instability problems are encountered in the present case when the convection velocity
becomes su$ciently high. However, when X is of magnitude 1, no problems arise using the
direct Galerkin method for values of l less than approximately 2. Henceforth, the standard
cubic Hermite shape functions for Euler beam elements can be used in the numerical
analysis at convection velocities ful"lling this requirement.

6. NUMERICAL EXAMPLES

A "nite beam section of the length ¸ is modelled, and numerical integration is performed
over the time interval ¹

I
. In this procedure, both the time increment, Dt, and the spatial

increment, Dx have to be considered. The latter corresponds to the element length in the
FEM model.

As a rule of thumb, when linear elements are used each wave must be described by at least
nj
e
"10 elements to obtain satisfactory results [15]. For Euler beam elements the number is

somewhat lower, about 4, because the Hermite shape functions are cubic. Note that because
a moving system of reference is used, it is always possible to apply a point load directly in
one of the nodes. Hence, this number of elements can be used, not only for analysis of
stationary loads but also for moving loads, unlike the case when a "xed system of reference
is used [7]. In any case, it is necessary to know the shortest wavelength present at either side
of the loading. The wavelengths are given as

j`
min

"min G
2n
D a

1
D
,

2n
Da

2
DH , j~

min
"min G

2n
D a

3
D
,

2n
Da

4
DH . (34)

Next, the length of each element is found as

Dx`"

j`
min
nj
e

, Dx~"

j~
min
nj
e

. (35)

The time step is obtained from the Courant relation

Dc DDt

Dx
"C, C)1, (36)

where c and Dx present a characteristic set of wave propagation velocity and spatial
increment and C is the Courant number.

To ensure that equation (36) is ful"lled for all possible sets (c, Dx) it is necessary that

Dt"min G
CDx`

D c
1
D

,
CDx`

Dc
2
D

,
CDx~

D c
3
D

,
CDx~

Dc
4
D H . (37)

When the convection velocity is chosen to be su$ciently high or a certain amount of
damping is introduced, the increments de"ned by equations (35) and (37) provide no



Figure 6. Numerical ( ) ) ) ) ) versus analytical (**) results, l"0.
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di$culties in the numerical integration. However, when X"1 the real part of one of the
wavenumbers will be extremely small, no matter how much damping and convection that
has been introduced (see Figures 3}5). Hence, equation (37) prescribes a time step only
slightly larger than zero, i.e., Dt+0, and consequently a huge amount of integration steps
must be performed within the time interval ¹

I
. It should be noted that when f"l"0, no

numerical solution can be formed for X"1 since all a
j
"0 in this particular case. Here,

however, as stated earlier the amplitude of motion is in"nite.
Figures 6 and 7 show the results for a model with the parameters

EI"108 Nm2, i"108 N/m2, k"102 kg/m, f"0)1, (38)

nj
e
"8, C"0)5, ¸"

j~#j~

2
. (39)



Figure 7. Numerical ( ) ) ) ) ) versus analytical (**) results, l"1.

FE MODELLING OF INFINITE EULER BEAMS 599
The analysis is performed for single-frequency harmonic excitation at various combinations
of loading frequency and convection velocity,

X"M0)5, 1, 2)0N, l"M0, 1N, (40)

and the displacement time series are displayed for two nodes, which are located two element
lengths to either side of the point load. The numerical results (the dotted line) are plotted
against the corresponding analytical solution (the continuous line). Note that the analytical
solutions are stationary, whereas the numerical solutions include a transient part which
arises because the load also excites the eigenmodes of the FEM-model, which are not
present in the analytical solution directly concerning the in"nite beam. The transient
motion has been counteracted by Rayleigh damping that is fully removed after 10 excitation
periods, ¹"2n/u.



600 L. ANDERSEN E¹ A¸.
In all cases, the numerical results after t/¹"10 are seen to be nearly identical to the
analytical results. Hence, the transmitting boundary conditions are seen to work well. Note
that the problem previously described with the time step given by equation (37) arises for
the combination (l"1, X"1) (see Figure 4). This problem has been overcome by
disregarding the problematic wave velocity close to in"nity in the choice of time step.
Nonetheless, the results of the numerical and the analytical solution are in good agreement
also in these cases, in de"ance of the fact that one of the waves cannot propagate in the
numerical model because CA1. This is of particular interest, since the amplitude of the
wave component in question is actually relatively high and the attenuation is low, see
Figure 4.

Next, the numerical solution is tested when the excitation signal contains several
frequencies. The load is applied as a Ricker pulse, which is de"ned as

f (t)"G
f
0

52>5

42
v (1!v2)2 for 0(t(¹

c
,

0 for ¹
c
)t,

(41)

where f
0

is the maximum intensity of the load signal and v is a linear function given as

v (t)"
2t

¹
c

!1. (42)

The amplitude spectrum of the Ricker pulse has a distinct peak at the circular frequency
u

c
"2n/¹

c
(see Figure 8). Hence u

c
is referred to as the centre frequency.

When the loading is not harmonic, the question arises as to which frequency the
transmitting boundary conditions should be tuned to. A natural choice when concerning
the Ricker pulse is to use u

1
"u

c
as the tuning frequency because the majority of the energy

of the loading is contained in a signal with this frequency. However, in contrast to the case
when stationary loading is applied, the structure will not undergo stationary forced
vibrations at the loading frequency. After the travelling wave has passed, the beam will
instead continue vibrating at the eigenfrequency, u

0
. This actually means that it might be

more accurate to tune the transmitting boundary conditions to a frequency somewhere
between u

c
and u

0
according to the following linear weighting:

u
1
"=

c
u

c
#(1!=

c
) u

0
, 0)=

c
)1. (43)
Figure 8. Ricker pulse, amplitude spectrum and time series; P*"f
0
¹

c
.
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Another problem is that no analytical solution to the wave propagation problem can be
found. Instead the time-integration solution is checked against a solution obtained using
a discrete Fourier transform}inverse discrete Fourier transform (DFT}IDFT) method. As
a "rst step in this method time and frequency are discretized,

t
j
"( j!1)Dt, j"1, 2,2, J, Dt"

¹
I

J!1
,

(44)

u
k
"(k!1)Du, k"1, 2,2, J, Du"

2n
Dt

,

where ¹
I
is the total analysis time and J is most favourably chosen as a power of two so that

the fast Fourier transform (FFT) algorithm can be used. The nodal displacement
amplitudes are then calculated for each u

k
as

A(u
k
)"H (u

k
)F (u

k
), (45)

where A and F are the DFTs of a and f de"ned as

A(u
k
)"

J
+
j/1

a (t
j
) exp(iu

k
t
j
)Dt, F (u

k
)"

J
+
j/1

f (t
j
) exp(iu

k
t
j
)Dt, (46)

and H is the frequency response matrix,

H(u
k
)"(K(u

k
)!iu

k
C(u

k
)!u2

k
M (u

k
))~1. (47)

Note that the system matrices depend on the frequency because the transmitting boundary
conditions are applied via M, C and K.

Subsequently, the nodal displacements and rotations can be found by taking the IDFT of
A, i.e.,

a(t
j
)"

1

2n
J
+
k/1

A(u
k
) exp(!iu

k
t
j
)Du. (48)

If the beam is at rest, both at the beginning and at the end of the analysis time interval ¹
I
,

the solution is correct except for the error introduced via the transmitting boundary
conditions for each single frequency u

k
. However, the previous analysis of the performance

of the transmitting boundary conditions at single-frequency harmonic excitation proves
that this error is insigni"cant. Also note that the DFT}IDFT method does not su!er from
any instability problems (since no time integration is performed). Thus, it can be used in
conjunction with standard Galerkin variation for arbitrary convection velocity and loading
frequency.

Figure 9 shows the displacement time series for the nodes two element lengths behind and
in front of the loading respectively. The results from a direct time integration of the FEM
scheme with and without transmitting boundary conditions are plotted against the &&exact''
solution obtained by the DFT}IDFT method. The centre frequency of the Ricker pulse is
u

c
"2u

0
and the relative convection is l"0)5. Di!erent values of u

1
are tested and the

following observations can be made.
In all cases the introduction of boundary conditions proves favourable. Thus, the

numerical solution without transmitting boundaries is far o!, whereas the numerical
solution with transmitting boundary conditions is close to the exact solution.



Figure 9. Numerical results with ( ) ) ) ) and without (* )* ) ) transmitting boundary conditions versus &&exact''
results (}) for X

c
"2)0 and l"0)5.
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Moreover, the solution for =
c
"0)5 is only slightly less accurate than the solution for

=
c
"1 in the "rst part of the integration time, i.e., before the travelling wave generated by

the pulse leaves the modelled part of the beam. However, it is much more accurate in the
remaining part of the ¹

I
interval. Likewise, it is superior to the solution with=

c
"0 in the

"rst few periods ¹
c
and su!ers only little in the remainder of the integration time. Hence, all

in all a tuning with=
c
"0)5 turns out to be better than tuning the boundary conditions to

either u
c
or u

0
.

7. CONCLUSIONS

When a harmonic, vertical point load moves uniformly along an Euler beam resting on
a Kelvin foundation, four independent waves occur, two on either side of the moving source.
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The nature of the waves is highly dependent on the di!erent parameters in the problem but
in most cases two of the waves will be travelling waves with almost no attenuation, and the
remaining two waves will be near-"eld waves trapped within a region close to the source. It
turns out that one of the wave components may have an extremely high phase velocity,
which is a problem in the numerical solution. However, even if this wave component has
a signi"cant amplitude at the arti"cial boundary it may be disregarded when determining
the time step for the numerical integration.

Transmitting boundary conditions can be formulated for harmonic excitation with
a single-frequency signal. The transmitting boundary conditions are tested in an
FEM-model and are found to work satisfactorily for single-frequency harmonic excitation.
For a Ricker pulse containing a band of frequencies the transmitting boundary conditions
also work quite well. It becomes advantageous to tune the boundary conditions to
a frequency somewhere between the centre frequency of the loading and the eigenfrequency
of the system.

Because the relationship between time and spatial derivatives of the displacement "eld is
strongly non-linear in the beam problem it seems impossible to devise a "lter, which is
independent of the loading frequency, even within a narrow frequency band. Nevertheless,
quite good results can be obtained, even for a broad-banded load, when the
single-frequency transmitting boundary conditions are tuned to a suitable frequency.
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